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In this paper we study the 3-state Potts model on the triangular lattice which has 
two- and three-site interactions. Using a Peierls argument we obtain a rigorous 
bound on the transition temperature, thereby disproving a conjecture on the 
location of its critical point. Low-temperature series are generated and analyzed 
for three particular choices of the coupling constants; a phase diagram is then 
drawn on the basis of these considerations. Our analysis indicates that the 
antiferromagnetic transition and the transition along the coexistence line are of 
first order, implying the existence of a multicritical point in the ferromagnetic 
region. Relation of the triangular q-state Potts model with other lattice-statistical 
problems is also discussed. In particular, an Ashkin-Teller model and the 
hard-hexagon lattice gas solved by Baxter emerge as special cases in appropriate 
limits. 

KEY WORDS: Potts model; triangular lattice; Peierls argument; low- 
temperature series; phase diagram; relations with other lattice models. 

1. INTRODUCTION 

The q-component Potts model ~ ~) is a generalization of the Ising model (the 
q = 2 case) and it has recently been of particular theoretical interest. 3 The 
first comprehensive investigation of the q > 2 models was a study of the 
q = 3 case by Straley and Fisher ~3) using series analysis. A large number of 
subsequent studies using both series analysis and renormalization group 
techniques failed to give consistent descriptions of the critical behavior. 
While Baxter ~4) has shown that the transition in two dimensions is first 
order for q > 4 and is continuous for q < 4; neither series analysis ~5) nor 
(prior to the work of Nienhuis et  al. (6'7)) renormalization group techniques 
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have consistently indicated the change from continuous to first-order 
behavior. Some progress has been made toward the understanding of the 
ferromagnetic q = 3 model, however. Baxter ~8) has recently solved the 
hard-hexagon lattice gas, a system which is believed to be in the universal- 
ity class of the q = 3 Potts model. Subsequently, Enting (9) has shown that 
the series for the q = 3 ferromagnetic model with pure two-site interactions 
appear to be consistent with the hard-hexagon's exponents, although the 
convergence is extremely slow. 

In view of the difficulties encountered in studying the ferromagnetic 
Potts models, it is perhaps not really surprising that there have been very 
few studies of the antiferromagnetic Potts models. While evidences appear 
to indicate that the antiferromagnetic model exhibits no transition on the 
square lattice for all q >/3, (2'1~ the q = 3 model on the triangular lattice 
is of particular interest which is worthy of further investigation. Schick and 
Griffiths ~12) have studied such a Potts model with both two-site and 
three-site interactions, using renormalization group techniques. For appro- 
priate negative values of the couplings, they found an antiferromagnetically 
ordered phase terminating with a line of critical points. They also found 
that the ferromagnetic and antiferromagnetic phases coexist at finite tem- 
peratures, with the coexistence line terminating at a bicritical point. (It 
should be pointed out that the system considered by Schick and Griffiths 
differs from the "loose-packed" system which has three-site interactions on 
only half the triangles and which has been studied by Baxter et  al., (13) Wu 
and Zia, ( ~ 4) and Enting.( ~ 5, ~ 6) ) 

In this paper we study in further details the "close-packed" q = 3 
model of Schick and Griffiths, (12) with emphasis on its critical behavior 
along the coexistence line and in the antiferromagnetic region. Our study 
was motivated in part by a discrepancy between a recent conjecture by 
Wu (17) on the critical point of this close-packed system and the phase 
diagram obtained in Ref. 12. To clarify the situation we have used a 
generalized Peierls argument to obtain a rigorous bound on the location of 
the critical point. This bound clearly shows that Wu's conjecture is incor- 
rect for q = 3. We further developed series expansions for three particular 
choices of the coupling strengths. Our series analysis provides numerical 
estimations which lend support to the general locations of the phase 
boundaries found by the renormalization group approach. However, there 
are a number of indications that some of the transitions are of first order, 
which is not obtained from the renormalization group analysis. We also 
discuss the connection of the general q-state model with other lattice- 
statistical problems. In particular, we show that the hard-hexagon lattice 
gas solved by Baxter (s) can be generated from the present model by taking 
a special limit. 
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The organization of this paper is as follows: In Section 2 we consider 
the symmetry of the 3-state model. The main results of our study are 
summarized in Section 3. In Section 4 we present a Peierls argument to 
derive a rigorous bound on the transition temperature which disproves the 
Wu conjecture. Section 5 describes the techniques used to derive the 
low-temperature series, and Section 6 discusses the series analysis; the series 
are tabulated in Section 5. Section 7 relates the general q system to other 
lattice-statistical problems. 

2. GENERAL CONSIDERATIONS 

Consider the 3-state Potts model on the triangular lattice in which each 
site can be in one of three spin states; 0, 1, or 2. In addition to the 
nearest-neighbor interactions, there is a three-site interaction in each of the 
triangular faces. The Hamiltonian ~ takes the form 

- , 8 %  = K~, ,  33(o , - a j ) +  L ~,  $3(a; - a1)$3(o g - a,~) (1)  
(/j} (,}k} 

where the first summation is over all edges (connecting sites i and j )  of the 
lattice, and the second summation over all elementary triangles (surround- 
ing sites i,j, and k). In (1),/3 = 1/kT, o /=  0, 1,2 specifies the spin state at 
the ith site and Sq(i-j) is 1, if i - j  = 0 (rood. q), and is zero otherwise. 

The symmetry properties of Hamiltonian (1) have been described by 
Schick and Griffiths. (12) It is convenient to follow their treatment and 
define the variable 

M = 3K + 2L (2) 

Figure 1 shows the three distinct situations that can arise on an elementary 
triangle. Depending on which of these arrangements has the lowest energy, 
the system will have as its ground state one of the ferromagnetic orderings, 
one of the antiferromagnetic orderings, or will be in the paramagnetic 
regime with no ground-state ordering. We denote the three types of 
triangular configuration as F, A, or P accordingly. The energy E per 

0 / \  
o o 

0 0 

/\ /\ 
1 2 1 1 

F A P 

Fig. 1. The three distinct spin configurations that can arise on an elementary triangle. 
Ferromagnetic (F), antiferromagnetic (A), and paramagnetic (P). 
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Fig. 2. Regions of the lowest energy for the three types of spin arrangements in Fig. 1. 

triangle is given by 

E(F)  = - M / 2 B  

E(A)  = 0 (3) 

E (  P ) = - K / 2 f l  

The regions with the various ground states are thus 

(i) Ferromagnetic if M > K, M > 0, 
(ii) Antiferromagnetic if 0 > K, 0 > M, 

(iii) Paramagnetic if K > 0, K > M. 

These different regions are shown in Fig. 2. 
Since the degeneracies of the ferromagnetic and antiferromagnetic 

ground states are finite and the degenerate states are related by definite 
symmetry operations of the Hamiltonian, it follows from a theorem due to 
Slawney (Is) that a phase transition exists in the sense that, at sufficiently 
low temperatures, the free energy has a discontinuous derivative with 
respect to any symmetry-breaking field. In the paramagnetic regime the 
ground-state entropy is nonzero. Argument can then be made as in the case 
of the antiferromagnetic Ising model (19) that states of different long-range 
orders can be mixed without causing an energy increase. This then rules out 
the occurrence of a phase transition accompanying the onset of a long- 
range ordering. 

The discussion of the model is simplified if we introduce a number of 
spin transformation operations. For single spins we define 

i: identity (no change) 

j :  0 ~ 2---> 1 -->0 (4) 
k: 0--) 1 ---)2--->0 

There are nine distinct global transformations defined by applying one of 
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the transformations (4) to all spins in one of the three (triangular) sublat- 
tices a, b, and c. They are 

I: ( i , i , i )  on (a,b,c)  

A: ( j , j , j )  on (a,b,c)  

B ( = A A ) :  ( k , k , k )  on (a,b,c)  

X: (i, j ,  k) on (a, b, c) 

Y: ( i , k , j )  on (a,b,c)  

(5) 

The remaining four transformations are AX,  A Y, BX, and BY.  It may be 
verified directly that, while the transformations (5) mix the F and A 
triangles of Fig. 1, the P triangles remain invariant under all nine transfor- 
mations. 

3. THE PHASE DIAGRAM 

For continuity in reading, we now summarize our main findings. 
Details of the analyses will be found in Sections 4-6. 

Our first result is an application of the Peierls argument (2~ leading 
to a bound on the boundaries of the region in which long-range order can 
exist. For M = 0, and K < 0, viz., the coexistence line between the ferro- 
magnetic and antiferromagnetic ground states, we obtain the following 
rigorous bound on the critical point: 

IKcl < 11.39 (6) 

We then argue that the bound should persist to M v ~ 0 to yield the bounds 

M -  K <  11.39 (7) 

in the ferromagnetic region, and 

Igl < 11.39 (8) 

in the antiferromagnetic region. These bounds are shown in Fig. 3. We also 
plot in Fig. 3 Wu's conjecture (for q = 3) on the ferromagnetic phase 
boundary:(~7) 

e M = 3e x + q - 2 (9) 

It is seen that the conjectured boundary extends into the ordered region for 
small M and therefore must be incorrect. In particular, it yields the 
incorrect prediction of no transition (Kc = -  ~ )  for M = 0. Thus the 
rigorous bound (6) alone is sufficient to disprove the validity of (9) for 
q - -3 .  

In Fig. 4 we plot the same diagram in an enlarged scale so that the 
shaded regions of Fig. 3 are not seen. The circles I, II, III denote the three 
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Fig. 3. Bounds on ordered regions as expected from the Peierls argument. The system is 
ordered in the shaded regions; the phase boundaries are confined irt the unshaded region. The 
curve is a plot of the Wu conjecture (9) for q --- 3. 

I 

o.'~" 
wu : . : . /  

\ I 

t 
Ix 
D / 
I i 
l i  
t i  
I i o 
I 

t I~ K 
I 2 

-~-2 

-3 

Fig. 4. Phase diagram in the (K, M) space. The circles I, II, III denote the three critical 
points determined from series analyses of this paper and the circle IV is the exact critical point 
of the ferromagnetic model with pure two-site interactions. The solid and broken lines are, 
respectively, the continuous transition and first-order transition phase boundaries obtained by 
connecting the four circles. The dotted curve is the ferromagnetic phase boundary predicted 
by the conjecture (9) for q = 3; the curve labeled RG is the phase boundaries determined by 
renormalization group (Ref. 12). The cross denotes the multicritical point expected to exist. 
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transition points determined from the series analysis of Section 5, and the 
circle IV denotes the exact critical point of the ferromagnetic model with 
pure two-site interactions. (22) Their locations and the apparent nature of 
transitions (see Section 5) are summarized as follows: 

I. K = 0, M c ~ 1.37 (continuous, fl = 1/9; 3,' = 13/9) 
II. M = 0, K c ~< - 1.99 (first order) 

III. M = 3K < 0, Kc --~ - 1.59 (first order) 
IV. M = 3K > 0, K c = ln[2 cos(~r/9)] = 0.63094 . . . (continuous,  

= 1 /9 ,  3 , '=  13/9) 
B 

Here the value of fl = 1/9 for the exact critical point IV has been taken 
from Ref. 9. The solid and dashed lines in Fig. 4 are the phase boundaries 
obtained by connecting these four points. It must be noted, however, that 
the locations of the critical points I, II, and III are merely approximate, 
which are based on the best estimates deduced from the series analyses. 

For comparison we also plot in Fig. 4 the conjecture (9) for q = 3 (the 
dotted line) and the phase boundaries determined from the renormalization 
group RG. (12~ It is rather remarkable that, in the range of - 1 ~ K~< 1 at 
least, the phase boundaries from both the series and the renormalization 
group analyses are well approximated by the expression (9). 

The results on the nature of transition obtained from the series analysis 
appear to suggest the existence of a multicritical point, indicated by • in 
Fig. 4. Indeed, the existence of such a multicritical point is supported by 
recent Monte Carlo analysis. (23) The transition would be of first order for 
values of M below that of the multicritical point, as indicated by the phase 
boundary in broken lines, and continuous otherwise, as indicated by the 
phase boundary in a solid line. This would imply that the antiferromagnetic 
systems all have first-order transitions. However, since we have been unable 
to obtain definitive conclusions for the antiferromagnet with pure two-site 
interactions (point III), the possibility still exists that there may exist a 
second multicritical point at a point of sufficiently small negative M. 
Finally, the fact that fl = 1/9, 3, '= 13/9 for both points I and IV cor- 
roborates the picture that the critical points on the line of continuous 
transitions all belong to the hard-hexagons universality class. It should also 
be mentioned that our analyses of a '  encountered difficulties similar to 
those found by Fisher and Straley. (3) 

4. PEIERLS A R G U M E N T  

We now present a Peierls argument (2~ to obtain bounds on the 
critical temperature. 
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The idea of Peierls argument is to establish that, with the boundary 
spins fixed at a given ordered configuration and at sufficiently low tempera- 
tures, the fraction of interior spins that are also in the same ordered state is 
arbitrarily close to unity. This serves to establish the existence of a transi- 
tion as well as a bound on the critical point. 

We shall consider first the crucial case of M = 0, K < 0 for which the 
conjecture (9) contradicts the renormalization group analysis of Ref. 12. 

On the coexistence line M = 0, K < 0, the ground state is any one of 
the nine ferromagnetic and the antiferromagnetic states. For simplicity we 
can therefore choose a boundary condition in which all boundary sites are 
in the spin state 0. The goal is then to show that, at sufficiently low 
temperatures, the fraction of the interior sites that are also in the spin state 
0 can be arbitrarily close to unity. 

The energy of a spin configuration containing n P triangles is 
nlKI/2 ft. For each spin configuration S we can then construct a graph G 
by shading the P elementary triangles. A typical G constructed in this 
fashion is shown in Fig. 5. Note that not all graphs obtained by shading 
randomly chosen triangles correspond to a spin configuration. In fact, for a 
large triangular lattice of N sites, there are 3 u spin configurations generat- 
ing a much lesser number of G, while there are 4 u = 2 2u ways that the 2 N 
triangles can be independently shaded. 

Generally, a graph G consists of disjoint clusters of shaded triangles, 
and more than one S can produce the same G. The spin configuration(s) 
associated with a given G can be reconstructed by working inward from the 
boundary. Putting all boundary spins in the spin state 0 and working 
toward the center, a possible ambiguity in assigning spin states to the 
interior sites arises only for the P triangles (a property unique to the 3-state 
model). Let gc be the number of ways of assigning distinct spin states to a 
cluster of tc triangles, once the states of the sites surrounding its perimeter 
are fixed. We can then convert the spin sum into a sum over the graphs by 

/ • / 0  0 0 0 

0 

0 ,2 0 0 2 0 

0 1 2 "~z"O 0 1 0 

Ozm.~ 2 :'~0 0 ~ I  I/#F~ 0 

VfoOo O ,  ' 
Fig. 5. Typical spin configuration S on a lattice of 44 sites. The boundary spins are fixed in 
the spin state 0, and the associated graph G is obtained by shading the P triangles. For clarity 
borders of the F and A triangles are not drawn. 
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writing 

E e-~E= E l-I[  g~e-t'Jrl/21 (10) 
S G c 

where the product is over all clusters of G. 
I t  is now a simple matter to proceed as usual 4 to construct a Peierls 

argument. Let there be v(t) ways of embedding a connected cluster of t 
shaded triangles on the lattice. Number these embeddings from 1 to v(t). 
For a given spin configuration we define the variable 

Xt (j) = 1 if thej th  embedding of a cluster of t shaded 
triangles is in the graph 

= 0 otherwise (11) 

Then the number N w of spins that are in the wrong states, viz., 1 or 2, is 
bounded by the inequality 

. . 2  v(t) 

Nw<< Z " " :  Y= (-d) Z ,X,  (j) (12) 
t = 6 , 8  . . . .  

where we have used the fact that the number of sites interior to a cluster of 
t triangles is at most ( t /6 )  2. 

The inequality (12) remains valid upon taking the thermal average. 
After introducing (10), we find 

.2 ~,(t) 
t )  ~ (xt(J)) (13) (Nw) < E (-~ 

t = 6 , 8  . . . .  j =  1 

where 

<x,(s,) = y'e-B  / y, e B: 
S S 

=~'~[gce-tctrl/2]/~[gce -'AKV2] (14) 

Here the summations ~ '  are over those S or G for which thej th  cluster of t 
shaded triangles, Tj, is present. 

For each graph G in the numerator of (14) we construct a graph G* 
derived from G by eliminating the cluster T] entirely. We now show that G* 
can indeed be generated from a spin configuration S* obtained as follows: 
Starting from any one of the spin configurations S which generates G, we 
derive S* by (i) keeping the states of all sites exterior to T] unchanged, (ii) 
assigning all sites in T: the same (ground) spin state as those sites immedi- 
ate exterior to Tj, and (iii) applying one of the nine transformations (5) to 

4 See, e.g., Ref.  21. 



360 EnUng and Wu 

sites interior to Tj, if any, such that the graph interior to T/ remains 
unchanged. Note that the last step is possible because the transformations 
(5) leave the P triangles invariant, and the last step will not change the 
overall energy interior to Tj (a property unique to M = 0). 

Now for each G in the numerator of (14) we keep only the term G* in 
the denominator, thus obtaining a bound. Also, since gc cannot be larger 
than 2 to, we obtain 

(St (j)) < 2'e -'lgl/2 (15) 

Now the contour of a cluster of t triangles forms a Hamiltonian circuit. It 
follows that the number v( t ) /N is bounded by 5 3t, the number of a random 
walk of 3t steps on an N-site triangular lattice without immediate reversals. 
Putting these bounds together, we obtain from (13) 

1 (~)253t2te-tlK,/2 (N  w ) < ~ (16) 
t=6,8  . . . .  

Now the right-hand side of (16) converges and can be made arbitrarily 
small at low enough temperatures. We have thus completed the proof that 
the fraction of interior sites in the spin state 0 can be arbitrarily close to 
unity. In fact, a bound on the critical temperature Igcl can be obtained by 
setting (1 /N) (Nw)- -2 /3 .  This leads to (6) after carrying out the summa- 
tion. Needless to say, this bound is very generous, as seen obviously from 
the steps used in reaching (16). [To complete the formal proof of the 
existence of a transition, the bound (16) is to be used in conjunction with 
the usual convexity argument (21) to establish a discontinuity of the free 
energy in the field derivative at sufficiently low temperatures.] 

We consider next bounds in the ferromagnetic and antiferromagnetic 
regimes. For M > 0 and M > K the energies (3) can be written as 

E(F)  = 0 

E(A)  = M/2f l  > 0 (17) 

E ( e )  = (M - K ) / 2 3  > o 

while for M < 0 and K < 0 they are 

E(F)  = IMI/21~ 

= 0  (18) 

E ( P )  = IKI/2/  

The two cases can be viewed as raising E(A.) and E(F), respectively, from 
E(F) = E(A) = O, E(P) > 0. Intuitively we expect the transition tempera- 
ture of a spin system to be nondecreasing when the energies of the excited 
states are increased. It follows then that the bound (6) is still valid, 
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provided that the appropriate new values of E(P)  are used. This consider- 
ation then leads to the bounds (7) and (8). 

5. SERIES DERIVATION 

In this section the finite-lattice method of series expansions (24-26) is 
used to obtain low-temperature expansions for the three-state Potts model 
(1) for three choices of the coupling constants: 

I. Pure three-site interactions (K = 0, L > 0) with the expansions param- 
eter w = e -L. The series are obtained through w 33. 
II. The coexistence line (M = 0, K < 0) with the expansion parameter 

v = e K/2= e -M3. The series are obtained through v 21. 
III. The antiferromagnet with pure two-site interactions (L = 0, K < 0) 
with the expansion parameter u = e K. The series are obtained through u 11. 

Series for the partition function, the order parameter, and the zero-field 
susceptibility in each of the three cases are tabulated in Tables I-III .  It 
should be noted that series of a fourth special case, viz., the ferromagnet 
with pure two-site interactions (L = 0, K > 0), has been previously ob- 
tained and analyzed. (15) 

The low-temperature series are obtained through the approximants of 
the form 

Z -- 1"I Z ( m , n )  a(m''O (19) 
m,?/  

with 

a(m,n)  = 1, m + n = 2 W +  1 

= - 3 ,  m + n = 2 W  
= 3 ,  m + n = 2 W -  1 
= - 1 ,  m + n = 2 W - 2  
= 0, otherwise 

The parameter W is the maximum width of the rectangle that need be 
treated so long as the symmetry Z(m,  n )= Z(n,  m) is fully exploited. The 
function Z(m,n )  is the partition function of a finite m • n rectangle 
surrounded by sites which are in the appropriate ground state. For our 
purposes the triangular lattice is treated as a square lattice with second- 
neighbor interactions in one diagonal direction. 

It was found that for series I, the use of width W gave terms through 
w 4w+5 while in series III width W gave terms through u n with n 
= I n t [ ( 4 W +  7)/3]. In series II the coefficients were given correctly 
through v 2w+5 and the coefficient of v 2w+7 was also given correctly. 
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Table I. Series expansions for ferromagnet 
with pure three-site Interactions (K  = O, L > O, w - e - L )  

n = 6  n = 6  n ~ 6  
i 

n a n b n c n 

6 2 - 3  2 
7 0 0 0 
8 0 0 0 
9 0 0 0 

10 12 - 36 48 
!1 0 0 0 
12 - 8 24 - 2 0  
13 12 - 54 108 
14 78 - 360 744 
15 12 - 72 192 
16 - 126 522 - 612 
17 168 - 1044 2 904 
18 672 - 4212 11 836 
19 72 - 882 4 452 
20 - 1 506 7 983 - 12 018 
21 1 936 - 15 822 59 052 
22 7 098 - 55 503 194 958 
23 - 948 - 1 458 60 804 
24 - 16 582 105 021 - 171 670 
25 21 936 - 223 344 1 056 696 
26 81 474 - 760 662 3 213 204 
27 - 29 248 118 254 726 652 
28 - 191 832 1 406 079 - 2 342 142 
29 272 664 - 3 265 668 18 433 320 
30 960 054 - 10 453 170 52 139 564 
31 - 524 940 3 241 152 7 779 528 
32 - 2 340372 19445 643 - 31 967 142 
33 3 668 236 - 49 620 678 320 364444 

C o m p a r i s o n  of  a p p r o x i m a t i o n s  u s i n g  W = 1 to  7 s h o w e d  t h a t  t h e  coef f i -  

c i e n t s  of  v 2w+6 w e r e  t o o  s m a l l  b y  2 in  t h e  p a r t i t i o n  f u n c t i o n  series ,  t o o  

l a rge  b y  3 ( W  + 1) in  t h e  o r d e r  p a r a m e t e r  series,  a n d  t o o  s m a l l  b y  2 ( W  + 

1) 2 i n  t h e  s u s c e p t i b i l i t y  series .  A l l  of  t h e s e  r e g u l a r i t i e s  w e r e  c o n f i r m e d  fo r  

W = 1 to  6. T h e  ser ies  g i v e n  i n  T a b l e s  I - I I I  a r e  b a s e d  o n  t he  a s s u m p t i o n  

t h a t  t h e s e  r e g u l a r i t i e s  pers i s t ,  o r  e q u i v a l e n t l y  t h a t  t h e  c lass  of  g r a p h s  g i v i n g  

t h e  l o w e s t - o r d e r  c o r r e c t i o n s  h a v e  b e e n  c o r r e c t l y  i d e n t i f i e d .  F o r  ser ies  I a n d  

I I  t h e s e  l i m i t i n g  g r a p h s  a r e  c h a i n s  o f  W + 1 p e r t u r b e d  s i tes  c o n n e c t e d  b y  a 

l i ne  of  d i a g o n a l  b o n d s  o n  t h e  s q u a r e  l a t t i ce .  F o r  ser ies  I I I  t h e  l i m i t i n g  

g r a p h s  c o r r e s p o n d  to  p e r t u r b a t i o n s  of  t h e  t y p e  s h o w n  in  Fig .  6. 

T h e  p a r t i t i o n  f u n c t i o n s  Z(m, n) w e r e  c a l c u l a t e d  u s i n g  a t r a n s f e r - m a t r i x  

f o r m a l i s m  b a s e d  o n  b u i l d i n g  u p  f in i t e  r e c t a n g l e s  o n e  s i te  a t  a t ime .  F o r  

w i d t h  W =  1 ,2  . . . . .  7 i t  w a s  n e c e s s a r y  to  c o n s i d e r  n w = 2 ,5 ,  1 4 , 4 1 , 1 2 2 ,  
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Table II. Series expansions along the coexistence line 
( M  = O, K < O, v = e g / 2  = e - L / 3 )  

z 0 = l +  
n=6  n ~ 6  n = 6  

I I I I I  I I III I I I 

n a n b n c n 

6 2 - 3 2 

7 0 0 0 

8 6 - 18 24 

9 0 0 0 

10 24 - 99 186 

11 12 - 54 108 

12 94 - 540 1 400 

13 84 - 504 ! 344 

14 396 - 2 880 9 468 

15 604 - 4 500 15 072 

16 1 830 - 16443 66 630 

17 3 612 - 32 508 131 400 

18 9 232 - 98 328 472 352 

19 21 480 - 228 654 1 095 876 

20 50 484 - 620 304 3 4 3 9 0 4 4  

21 124 536 - 1 541 526 8 594 908 
i 

365, 1094 components, respectively, in the vectors involved. In general 
n w = 3 n w _  I - 1 a n d  is less than 3 w because we can make use of the 
equivalence of states 1 and 2 (assuming a ground state of state 0). For series 
III the equivalence is site dependent and it is simplest to work with 3 w 
components in the vectors. 

Table III. Series expansions for antlferromagnet with pure two-site 
interacUons (L = 0, K < 0, u = e K, x = u / ( l  + u)) 

Z 0 = I +  ~ anu"= ! + ~ a ; x "  
n = 3  n ~ 3  

n = 3  n = 3  

x= c un- c:x. 
n = 3  n = 3  

,, a .  a; b .  b'~ c.  c; 

3 2 2 - 3 - 3 2 2 

4 3 9 - 9 - 18 12 18 

5 12 36 - 45 - 99 78 138 

6 25 135 - 150 - 495 402 932 

7 105 525 - 711 - 2 511 2 280 6 132 

8 297 2 124 - 2 754 - 12 834 11 574 39 168 

9 1 213 8 993 - 12 681 - 66 759 61 994 247 126 

10 4 140 39 555 - 53 613 - 3 5 2 0 4 4  315 774 1 543 464 

11 16 725 179 760 - 243 450 - 1 878 480 1 635 708 9 570 072 
i i 
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Fig. 6. 

!2[y_i2!7_i7_] 
i / I / i / I / I / l  

The limiting graph for the series III showing a chain of perturbation (the heavy lines) 
from the ground state. 

For the antiferromagnet (series II) a spin transformation given by (5) is 
needed to map the antiferromagnetic ground state into the "all-zero" state. 
This, of course, changes the Hamiltonian (1). In fact, the transformation 
a i ~ a~= a i - c i induces the following change in (1): 

g ~ 3 ( o  i - o j )  .--@ g ~ 3 ( o  i - . j  - c i "4- c j )  (20)  

We choose a particular ground state and set the constants c,. to be the 
ground-state values of o i. While the interaction formally depends on the 
position through the variables ci, in fact the quantity c i - c j  does not 
depend on the position but only on the orientation of the edge connecting 
sites i and j .  Thus the transformation has mapped a system which has a 
staggered (antiferromagnetic) ground state onto one which has a uniform 
ground state with a translationally invariant (albeit anisotropic) interaction. 
Consequently, no special modifications are required when applying the 
finite lattice method. 

For each series calculation a field was applied such that each site not 
in the ground state has a weight z. As described by Enting (26) the coeffi- 
cients of the temperature variable are polynomials in z. They can equally 
well be written as polynomials in x = 1 - z with the expansion truncated at 
x 2 giving 

Z = Z 0 "]- x Z  1 + x 2 Z 2  q- " " " (21) 

This enables us to find the zero-field partition function Z0, the order 
parameter 

g = 1 - 3 Z ~ / 2 Z  o (22) 

and the zero-field susceptibility 

X = (2ZoZ 2 - Z o Z  , + Z ? ) / Z g  (23) 

On the coexistence line, M = 0, we could use M as an alternative 
ordering field by putting x = 1 - e - ~ .  If the bicritical point exists then the 
scaling power associated with this field would determine the shape of the 
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two incident critical lines. Since we believe that the transition is actually of 
first order, we have not pursued this calculation. 

The series for Z0, R, X are listed in Tables I-III .  We remark that, in 
principle, the finite lattice method can be applied whenever the ratio K/L 
involves small integers. Between the M axis and the negative K axis (i.e., 
- 2/3), the appropriate ratios are - 1/1, - 1/2, - 1/3. One remaining 
practical difficulty in deriving such series is the correct identification of the 
limiting graphs. 

6. SERIES  A N A L Y S I S  

The three groups of series I, II, and III are each analyzed in the light 
of the conjectured phase diagram. 

6.1. Pure Three-Si te  Interactions ( K  = 0, L > 0, w = e -L )  

During the course of this investigation it was these series that provided 
our first indication that the conjecture (9) might be incorrect. 

The analysis consisted of constructing Pad6 approximants to the 
logarithmic derivatives of R, X/W 6, and c/w 6, where c is the zero-field 
specific heat. To obtain any consistent description it was necessary to 
examine the trends in the Pad6 tables: 

(i) R: The higher-order approximants indicated w c = 0.5038 • .0005, 
fl = 0.106 • .001. The estimates of both wc and fl tended to increase as the 
order of the approximant increased. (A similar trend is found for the q = 3 
square lattice Potts model ~9~ and the q = 3 loose-packed pure three-site 
model on the triangluar lattice. ~6~) This means that, overall, increasing w~ 
is correlated with increased fl estimates due to the "length" effect, but the 
estimates showed an additional correlation between increases in w~ and fl 
for approximants of similar order. 

(ii) X: Both w~ and ~/' estimates tended to decrease as the order of the 
approximants increased (as in Ref. 16) and again there was additional 
correlation between w~ and 7' for approximants of similar order. The 
higher-order approximants gave wc = 0.504 • .001, 3,' = 1.40 • .02. 

(iii) c: The results were very irregular and did not show any system- 
atic changes in w~ and a '  as the order of the approximant increased. The 
approximants indicated w~ = 0.508 ___.005, a ' =  0.65 •  with higher w~ 
estimates generally associated with higher a '  estimates. (It should be noted 
that it has proved difficult to analyze Potts model specific heats in other 
cases and that one of the more successful techniques--analyzing E - E~ for 
I - a '  with the critical energy Ec obtained from a duality relation--cannot 
be used here.) 
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There are at least two ways of combining these results into a consistent 
description: 

(a) The system has the hard-hexagons exponents, ol' = 1/3, fl = 1/9, 
7' = 13/9 with w c = 0.5048 + .0005 (this value for w c is obtained from Pad6 
approximants to R-9).  Evaluating Pad6 approximants to (w c - w)(d/dw) 
ln(x /w 6) at wc gives 7 ' =  1.445_ .002. The inconsistency on the a '  esti- 
mates is attributed to the series being too short, as indicated by the 
irregularities mentioned above and by the absence of any systematic trend 
as the number of terms is increased. 

(b) Alternatively it could be suggested that the hard-hexagons expo- 
nents are being masked by the nearby multicritical point and that the series 
are revealing the values of a set of effective exponents with ~ ' ~  1.35, 
f l~0.105,  a '  ~0 .44  obeying an effective scaling relation and having w c 
~0.5038 ___ .0005. This set of values would be obtained by taking the 
approximants of (d/dw)lnR at face value; the 7' value is obtained from 
approximants to (w~-  w)(d/dw)ln(x/w6), Approximants to ( w -  we) 
(d/dw)ln(c/w 6) give a '= 0.55 _ .15 which includes the effective "scaling" 
value a'  = .44. 

The two explanations are somewhat similar in that they both can be 
interpreted as being due to a singularity that is more complicated than a 
simple power law so that there may be a systematic bias in the estimates. 
(Our "error" limits are, as always, merely measures of consistency.) Never- 
theless we believe that the deviation of our estimate on wc from the value 
w c = 1/2 dictated by (9) (for q = 3) is significant. 

It is noteworthy that the q = 1 limit of the Hamiltonian (1) for general 
q spin states generates a percolation on the honeycomb lattice (see Section 
7 below). (27'28) Using this equivalence and a finite-size Monte Carlo estima- 
tion of the critical threshold for the site percolation (K = 0, w~ = e-L),  
Vicsek and Kert8sz (29) have found that at q = 1 the conjecture (9) gives a 
value of w~ = 1 / ~ -  slightly larger than their numerical estimate. Note, 
however, that the conjecture is correct at q = 2, giving the exact critical 
point for the Ising model. (17) 

6.2.  T h e  C o e x i s t e n c e  L ine  ( M  = 0, K < 0, v = e K/2 = e - L / 3 )  

The series were analyzed by constructing Pad6 approximants to the 
following functions: 

(i) (d/dv)lnR.  The higher-order approximants yielded the estimates 
v c = 0.370 +_ .001, fl --- 0.028 _ .001. 
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(ii) (d/dv)ln(x/v6). The higher-order estimates were v c = 0 .377_  
.005, ~,'= 1.5 ___ .2. 

(iii) (d/dv)ln(c/vr). This yielded highly irregular estimates, with 
many approximants having no positive real poles. 

(iv) (d/dv)ln[(dR/dv)/vS]. The approximants yielded the estimates 
vc = 0.365 _ .004, 1 - fl = 1.15 ___ .06. 

The discrepancies in the first three estimates tend to indicate that the 
implicit assumption of a continuous transition with power-law singularities 
might be incorrect. The result from the fourth estimate giving a negative 
value of /3 clearly indicates that the singularity seen is not a physical 
transition. 

We interpret these results as indicating a first-order transition occur- 
ring at v: <0 .37 ,  rather than being a bicritical point as predicated by 
Schick and Griffiths (12) from the renormalization group. For  comparison 
they found v c = 0.257; the Monte Carlo study (23) yields a first-order 
transition occurring at v~ = 0.369. 

6.3. Antiferromagnet with Pure Two-Site Interactions 
( L = 0 ,  K < 0 ,  u = e  r) 

The shortness of these series seriously limits the possibilities for useful 
analysis. We began by constructing Pad6 approximants to the following 
functions: 

(i) (d/du)lnR. The estimates for the critical parameters were u c = 
0.203 +__ .002, fl --- 0.070 _ .005. 

(ii) (d/du)ln[(dR/du)/u2]. This yielded the estimates uc = 0.204 + 
.003, 1 - fl = 0.94 + .05. 

(iii) (d/du)ln(x/u3). The estimates were u~ = 0.204 +.003, - / ' =  
1.4 _+.1. 

These estimates are all based on a small number  of low-order 
approximants. (For comparison, Schick and Griffiths (12) found u c = 0.210 
and Monte Carlo data ~23) yield u~ = 0.205.) We have also attempted to use 
the ratio method by changing variables to x - - u / ( 1  + u) so that u~ = 
0.204 __+.003 corresponds to x~ - 1 =  5 .90_  .07. The ratio analyses for the 
R (x) and X(x) series are consistent with the existence of a singularity in this 
range of x values, and this estimate was used to find the following exponent 
estimates: 

fl = 0.05 ___ .10, y'  = 1.55 _ .15. 

Direct application of the ratio method to the order parameter series R 
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indicates x~ ~ = 5.9, while the susceptibility series X indicates x~ ~ = 5.8. It 
should be noted that it is this lower value of x~ -~ which corresponds to the 
negative end of the range of fl estimates quoted above. 

As in series II, the negative fl estimates are the most obvious indication 
of a first-order transition. The positive fl estimates correspond to values 
smaller than those normally found in two-dimensional systems, but there 
are special cases in which such small values are known to occur. (Most 
notably the polarization exponent in the 8-vertex model ~3~ can take on any 
positive value.) 

Given the difficulties which many workers have encountered in trying 
to determine the nature of the transition in the q = 3 three-dimensional 
Potts ferromagnets, it is not surprising that our 11 terms series do not give a 
definite answer. One possible way of determining the nature of transition in 
this case would be to compare the results with an analysis of the high- 
temperature series, but again experience with the three-state three- 
dimensional ferromagnets suggests that the results might still be inconclu- 
sive. It should be mentioned that Monte Carlo simulations (z3'3~) of the 
model (with pure two-site antiferromagnetic interaction) have also indi- 
cated evidence of a first-order transition. 

7. RELATION TO OTHER PROBLEMS 

In this section we discuss the connection of the system described by 
the Hamiltonian (1) with other lattice-statistical problems. For this purpose 
we shall consider more generally the Hamiltonian (1) for general q, for 
which the only change involved is the replacement of 8 3 by 8q in (1). 
Namely, we now consider the q-state triangular Potts model (1). 

Our first result is a "duality" relation which relates the Potts model (1) 
to a Potts model on the Kagom6 lattice shown in Fig. 7. Denoting the 

Fig. 7. 

[////I/~ I///I//~ 

The Kagom~ model with two- and three-site interactions K* and L* equivalent to the 
q-state triangular model (1). The equivalence is given by (24). 
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respective partition functions by Za and Z x ,  the exact relation between the 
two models reads 

with 

where 

Z a ( K ,  L )  = ( y / q ) U Z  x ( K * ,  L * )  (24) 

e K~ - 1 = q ( e  K / 2 -  1 ) / y  
(25) 

y* = e L*+3r*- 3e r* + 2 

y = e L + 3 K / 2  - 3e K/2 + 2 
(26) 

y *  = e r* + 3x* - 3e  r• + 2 

and N is the number of sites of the triangular lattice. The Kagom6 lattice 
can be considered as the covering lattice (32) of the triangular lattice. In fact, 
the derivation of the duality (24) makes use of this same geometry and 
relies on a duality transformation due to Burkhardt. (33) Although Burk- 
hardt considered only the square lattice, his method is more general and 
applicable to any planar lattice whose dual is bipartite. A straightforward 
application of his transformation to the Kagom6 lattice in the present case 
then leads to (24). We refer to Ref. 33 for details which are straightforward 
and will not be repeated here. We remark that the duality relation (24) can 
also be generalized to anisotropic interactions. 

Next we state an equivalence which is obtained from an application of 
a general theorem (28) that a Potts model of the type (1) is related to a dilute 
Ports model. For the present problem this leads to the equivalence of (1) 
with a dilute Ports model (6'7) on the honeycomb lattice whose Hamiltonian 
is 

with 

- B %  = Eti t j [  r '  + r % ( o i -  o+)] + 
ij i 

(27) 

e K" = ( e "  + q - l ) / ( e  K - I )  

e x ' =  1 - e K (28) 

e -~x= q ( e  L - 1) 

Here ti = 0, 1 and oi = 1 . . . . .  q for ti = 1 only. 
The Potts models (1) or (27) also generate a site-bond percolation. 

Consider the honecomb lattice for which each site is occupied with a 
probability s and each bond a probability p, then the critical threshold of 
this percolation process is (27'28) 

f(1, - In p, - in s) = 0 (29) 
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where f(q, K ,L)=  0 is the ferromagnetic critical point of the system (1). 
However, the general expression of f(q, K, L) is not known except in the 
cases of pure two-site interactions for which (22) 

f(q,K,O) = e 31r - 3e K - q + 2 (30) 

and the Ising case for which (34) 

f (2 ,K,L)  = e K+r - 3 (31) 

Consider next the limit of 

e-(M-l() /2=y=fini te ,  M ~ o o ,  K ~ o o  (32) 

From (3) we see that the A (antiferromagnetic) triangles have zero weights. 
It follows that if we draw bonds on the dual (honeycomb) lattice to 
separate spins in different states, the resulting graphs G are always closed 
polygons. In fact, the mapping between the spin configurations and the 
polygonal graphs G is q(q - 1) e to 1, where p is the number of polygons in 
G. Furthermore, since each bond carries a weighty, we obtain the following 
identity in the limit (32): 

q- l e -2UUZ(q ,L ,K)~  F(q, y ) ~ ( q -  1)ey b (33) 
G 

Here, as before, N is the number of sites of the triangular lattice, Z(q, L, K) 
is the partition function of (1), and b is the number of bonds in G. A typical 
G in the expansion of F(q, y) is shown in Fig. 8. 

Before we consider a further limit of (33), we pause here to consider 
the graph generating function F(q, y). 

Domany et al. (35) have shown that F(q, y) is related to the partition 
function of a spin model with a O ( q -  1) symmetry. It follows that the 
critical properties of a O(N) model will show a change at N = 3 (corre- 
sponding to the q = 4 change of the Potts model). 

Of particular interest is the function F(3, y) which can be interpreted 
as generating physical models in a number of ways. First, consider an 
Ashkin-Teller model on the triangular lattice (36) and its graphical represen- 
tation as follows: To each spin configuration draw bonds on the dual, the 

' .v.L .L_.L . ~  

Fig. 8. Typical configuration of a term in the expansion (33) of the graph-generating 
function F(q, y). Each bond has a weight y and each polygon has a weight q - 1. 
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Fig. 9. Representation of the graph-generating function F(3, y) as generating directed 
polygons. Each polygon can be directed independently in the clockwise or the counterclock- 
wise direction. These graphs also generate a continuous XY-type model, and a special 
triangular spin model of s (> 3) states in which the states of two neighboring sites can differ 
by 0 or 1 (rood. s) only. 

honeycomb lattice, to separate spins in different states. If, in the notations 
of Ref. 36, we take to I = % = y ,  ~3 = 0, then only the configurations of 
closed polygons will survive, and the partition function is given precisely by 
4F(3, y). Results of Ref. 36 then lead to the conclusion that F(3, y) is 
critical at Yc = 1/2. 

The function F(3, y)  can also be regarded as generating a triangular 
spin model of s ( >  3) states in which, if the spin states are numbered from 
1 to s, the states of two neighboring sites can differ by 1 and 0 (mod. s) 
only. The simplest way to see this equivalence is to direct the polygons, 
once in the clockwise and once in the counterclockwise direction. This 
takes care of the factor of 2e in (33). A typical configuration of directed 
polygons is shown in Fig. 9. Going around a vertex of the honeycomb 
lattice, one makes the rule of an outgoing Ongoing) arrow increases (de- 
creases) the spin states by 1. There then exists an exact one-to-one corre- 
spondence between the directed polygonal configurations and the spin 
configurations. By the same reasoning as indicated above the critical point 
of this spin model is determined atyc = 1 /2  for all s > 3. 

The function F(3, .v) can also be regarded as the partition function of 
a continuous X Y  type model on the honeycomb lattice with the nearest- 
neighbor Boltzmann factor 1 + 2ycos#/j. By writing 2cos8  = e i~ + e -i~ 
and representing the terms e i~ by a directed edge running from site i to 
site j ,  we see that the partition function is again represented by directed 
polygons, and hence by (33). Thus, the above consideration relates this X Y  

model to the special spin model of s ( > 3) states mentioned in the above. In 
fact, the last equivalence is more general and can be extended to all planar 
lattices. Following our considerations it is immediately seen that this special 
s-state spin model on any planar lattice is equivalent to an X Y  model on 
the dual, provided that s > 1' = the coordination number of the dual. For 
example, the s > 4 spin model on the square lattice [with the restriction that 
the spin states of neighboring sites can differ by only 0 or 1 (mod. s)] is 
equivalent to a square X Y  model. This last result has been established by 
Domany e t a / .  (37) from a much more elaborate consideration. 
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Now we consider (33) further by making use of another observation 
due to Domany et al. ~35~ Taking y = [ z / ( q -  1)] 1/6 and then the limit 
q ~  oo, the right-hand side of (33) generates precisely the hard-hexagon 
lattice gas configurations for which Baxter (8~ has obtained the exact solu- 
tion. In particular the critical point is found to be 

z c = �89 + 5v~) = 11.09017. . .  (34) 

From the elaborate amount of analysis that led to Baxter's solution, it is 
perhaps safe to conclude that it will take a major breakthrough to solve the 
general q-state Potts model (1). 

8. SUMMARY AND CONCLUSIONS 

The main new conclusion of this paper for the three-state Potts model 
on the triangular lattice is the first-order transition found to exist on the 
coexistence line. This is compared to the continuous transition occurring at 
a bicritical point predicted by the renormalization-group analysis of Schick 
and Griffiths. (12) It is not surprising that they have failed to find a 
first-order transition since, prior to the introduction of transformations 
which include dilute variables, t6'7) virtually all real-space renormalization 
group studies had failed to find the known first-order transitions in the 
q > 4 ferromagnets. This may well be more than just an analogy, because 
one way of looking at our model is as a system of interacting triangles. 
Each triangle can take on one of 27 states, but the critical behavior should 
be dominated by interactions between clusters of the 6 (for M << 0) or 9 (for 
M = 0) types with the largest weights, so that the system can be regarded as 
a 6-state or 9-state Potts ferromagnet with additional anisotropic interac- 
tions. If these anisotropic interactions are irrelevant (in the sense of 
introducing no new fixed points), then the M < 0 and M = 0 systems would 
exhibit first-order transitions since they are equivalent to, respectively, the 
6-state and 9-state Potts ferromagnets. A less radical assumption is to 
suppose merely that the anisotropic interactions are irrelevant only in 
models with sufficiently large q, so that for q = 3 we might allow the 
possibility of some new type of continuous transition for M << 0. 

Finally, we have also demonstrated interesting connections of the 
q-state Potts model (1) on the triangular lattice with other lattice-statistical 
problems. 
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